Isolation of Oil Bodies

1 Reagents

1.1 Grinding medium 100 ml

EDTA	1	mM	\Rightarrow	500	mM	EDTA pH 8	0.2	ml
KCl	10	mM	\Rightarrow	1.0	M	KCl	1.0	ml
$MgCl_2$	1	mM	\Rightarrow	0.1	M	$MgCl_2$	0.1	ml
DTT	2	mM	\Rightarrow	1.0	M	DTT	0.2	ml
Tricine	0.15	M	\Rightarrow				2.67	g
Sucrose	0.6	M	\Rightarrow				20.54	g
KOH	pH 7.5							

1.2 Resuspension medium 100 ml

Grinding medium contains

Sucrose 0.6 M \Rightarrow 20.54 g NaCl 2.0 M \Rightarrow 7.09 g KOH pH 7.5

1.3 Floatation medium A 100 ml

Grinding medium contains

Sucrose 0.25 M \Rightarrow 8.56 g NaCl 2.0 M \Rightarrow 7.09 g KOH pH 7.5

1.4 Floatation medium B 100ml

Grinding medium contains

Sucrose 0.4 M \Rightarrow 13.70 g KOH pH 7.5

2 Preparation

Soak seeds in water for 1-24 hrs

Put all mediums on ice

3 Protocoal

- Homogenize seeds at 277 K in Grinding medium 2.5 g/10 ml, aliquot 0.1 ml as $F_{\rm 1}$
- Filtration by nylon filter
- Put 6 ml of homogenate into a centrifuge tubes, aliquot 0.1 ml as F₂
- Gently lay 6 ml of Floatation medium B on top of the filtrated solution
- Spin tubes at 9,000 rpm for 30 min.
- Take supernatant and aliquot $0.1\ ml$ as F_3 , then resuspend it in 6 ml of Resuspension medium
- Gently lay 6 ml of Floating medium A on top of the solution, do not mix!
- Spin tubes at 9,000 rpm for 30 min
- for(int i = 0; i++; i<2) {
 - Take supernatant and aliquot 0.1 ml as F_{i+4} , then resuspend it in 6 ml of Grinding medium
 - Gently lay 6 ml of Floatation medium B, do not mix!
 - Spin tubes at 9,000 rpm, 30 min

Collect supernatant

}

Resuspend in Grinding medium to a concentration of 100 mg lipid/ ml

4 Memo

```
KCl = 74.557 g/mol  \text{MgCl}_2 \cdot 6\text{H}_2\text{O} = 203.3 \text{ g/mol}   \text{EDTA} \cdot 2\text{H}_2\text{O} = 372.24 \text{ g/mol}   \text{Sucrose} = 342.3 \text{ g/mol}   \text{Tricine} = 179.2 \text{ g/mol}   \text{N-tris}[\text{Hydroxymethyl}]\text{methylglycine}; \text{N-[2-hydroxy1,}   \text{1-bis}(\text{hydroxymethyl})\text{ethyl}]\text{glycine}   \text{DTT;DL-dithiothreitol}   F = ma = \frac{mv^2}{r}   x \ rpm = \frac{60v}{2\pi r}   G = 1.119 \times 10^{-3} rx^2  A radious of roter SW41T1 is 110.2 mm
```

Operation of BECHMAN Ultra Centrifuge

- Turn on
- Clean up the water inside hatch and surface of the rotor
- Put rotor slowly and listen for a click
- Close the cover gently
- Set time, temp. and speed
- Turn on vacuume
- Wait for vacuum to reach > 2.0, and temperature to reach the desired setting (Ultracentrifuge will not start of vacuum or temp. is not at the desired level). Press start
- When the rotation stops, push the vacuum button to release the pressure
- Open the hatch
- Don't forget to write down the record

Warburg-Christain Assay

Depends on Y and W amount

$$A_{280} = E_{1cm}^{1\%} c \cdot l$$
 case $l = 1$ cm if $\frac{A_{280}}{A_{260}} > 1.5 \Rightarrow$ pritein /mg/ml=1 $0.5A_{280}$ else \Rightarrow protein /mg/ml=1.45A₂₈₀-0.74A₂₆₀